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A simple flow network model of biological signal transduction is investigated. Networks with prescribed
signal processing functions, robust against random node or link removals, are designed through an evolutionary
optimization process. Statistical properties of large ensembles of such networks, including their characteristic
motif distributions, are determined. Our analysis suggests that robustness against link removals plays the
principal role in the architecture of real signal transduction networks and developmental genetic transcription

networks.
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Cells in a biological organism function in a stable, precise
way despite noise and destructive mutations [1]. If the prin-
ciples of biological robustness were understood, they could
be further applied for the design of complex industrial pro-
duction and transportation systems, or for understanding so-
cial processes [2,3]. The cells operate as dynamical networks
and their robustness is, to a large extent, determined by a
special network architecture. This has been demonstrated for
various biological functions, including chemotaxis [4], me-
tabolism [5], signal transduction [6], and the cell cycle [7]. Tt
was shown that genetic networks with robust expression pat-
terns may spontaneously develop through biological evolu-
tion [8]. The problems of robustness have also been dis-
cussed in an abstract context for large random networks,
aimed at developing optimal defense strategies for the Inter-
net and the WWW [9-11]. The networks of a living cell are
not random. They are selected by biological evolution to
execute certain functions. In particular, a cell should activate
a fixed group of genes in response to each arriving stimulus.
These networks should maintain their prescribed, specific
functions, although possibly exposed to random damage or
parameter variations. The structure of such networks reflects
their functions. Is it possible, by adjustment of the network
structure, to develop systems with prescribed functions that
are, furthermore, robust against damage? How strongly
would the requirements of robustness against a particular
kind of damage affect their architecture?

In this paper, we study a toy flow model of biological
signal transduction. The network transports signals, applied
to input nodes, through a number of middle redistribution
nodes to a set of output nodes. In a cell, the analogy would
be to a particular set of genes that are turned on upon arrival
of a certain stimulus at the cell surface. This mapping be-
tween input (stimulus) and output (gene activity) is mediated
by a network of interactions among proteins in the cell.
These proteins are modeled as nodes in our networks, while
interactions between them are reflected in the existence of
links. Physically, a signal from the cell surface is passed on
through processes like protein phosphorylation or dephos-
phorylation, translocation, structural change, etc. In a gross
oversimplification of the real processes, we model this signal
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transduction process by an abstract network flow. Proteins
undergo mutations which in turn can affect the links among
them or completely delete some nodes and introduce new
ones. Thus the network topology is subject to random local
changes.

By running an optimization process with structural muta-
tions and subsequent selection, we show that networks with
predefined output patterns can be constructed. Then, we ex-
tend the optimization criterion and design networks which,
while approximately retaining a fixed output pattern, become
robust against removal of randomly chosen links or nodes.
Statistical properties of robust functional networks, for an
ensemble of different optimization trajectories starting with
various initial conditions, are considered and distributions of
structural motifs in two kinds of networks, robust against
link or node removals, are then determined.

A considered network of size N=N;,+ M +N,,, consists of
N,, input nodes, M middle nodes, and N,,, output nodes. Its
architecture is specified by a directed graph of connections
between the nodes with the adjacency matrix A;; (we have
Aj;=1, if there is a link from node j to node i, and A;;=0
otherwise). An input node can be connected only with the
middle nodes, a middle node can be connected with other
middle nodes and with the output nodes (see Fig. 1). Each
link j—i carries some signal flux u;;. The sum of all incom-
ing fluxes for any node is equal to the sum of all outgoing
fluxes. For any node, all outgoing fluxes are equal in inten-
sity and are obtained by splitting the total incoming signal
flux in equal parts between the outgoing connections. Thus
we have u;=(ZA,)7'2A;u; for any node k. Introducing
the total fluxes x;=2;A ;u;; passing through nodes i, this re-
distribution law can also be written as x;=XA,x;(2,A;)~"
for i=1,2,...N. External fluxes can be applied to the input
nodes and sinks are attached to the output nodes. An external
unit flux x,=1, applied to an input node a=1,2,...,N;,
becomes distributed after passing through the network and
fractions xz=Q,; of the applied flux reach different output
nodes B=1,2,...,N,,. The matrix Q with the elements Oup
represents the output pattern of a given network. Note that
250,5=1. The performance F(G) of a given network G is its
output pattern Q, i.e., F(G)=Q. The ideal performance of a
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network corresponds to some fixed output pattern Q,, speci-
fying to which final destinations and in what amounts a par-
ticular kind of signal must be supplied. In a biological set-
ting, the output pattern would correspond to a particular set
of target genes responding to the stimulus, together with their
strength of expression. A network G, is optimal if F(G)
=Q,. The distance € of any network G from the ideal per-
formance is €=|F(G)-Q|.

To characterize functional robustness of a network G, a
set S of all networks, obtained by applying local damage
(such as deleting a link or deleting a node, e.g., as a conse-
quence of a mutation in a protein) to the network G, should
be considered. This set can be viewed as the damage shell of
the considered network. We introduce some tolerance thresh-
old A, such that all networks with distances €>h with re-
spect to the ideal performance Q, are abortive. Then, the
robustness p of the network G is defined as the fraction of all
networks in its damage shell which are not abortive,

p=— 3 6h-[F(G)- Q). (1)
Nsgres
where Ny is the number of networks in the damage shell S
and 6(z) is the step function, 6(z)=1 for z>0 and 6(z)=0
otherwise.

To construct a network with a prescribed output pattern
Q, which is robust against local random damage, the follow-
ing optimization algorithm is implemented:

(i) At each iteration step, the flow error € and the robust-
ness of the network G are determined. The flow error is
computed as e= (2N,-n)‘12§i='112%;"1’(Qaﬁ—Qgﬂ)z. To determine
p, we consider a set of M networks G’ obtained from G by
deleting a single middle node. For each of them, the flow
error €' is calculated. The robustness p is the fraction of the
networks G’ with € <h. Next, an evolutionary structural
mutation is applied to the network G, yielding a new network
G, with a different flow error €, and a different robustness
p;- To decide, whether to accept this evolutionary mutation,
we examine the value of €, and the differences Ae=¢€,—€
and Ap=p-p;.

(ii) If the error of the new network is beyond the tolerance
threshold (e, > ), the decision is based on the flow errors.
The mutation is always accepted, if Ae<0 and accepted with
probability p=exp(—Ae/ ea) if Ae>0. If the error of the new
network is below the tolerance threshold (e, <h), the
decision is based on the robustness. The mutation is
always accepted, if Ap=<0, and accepted with probability
p=exp[-Ap/(1-p)o], if Ap>0. Hence the parameter o
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FIG. 1.
network.

Example of a flow distribution

plays the role of temperature in our Metropolis algorithm.

(iii) If the mutation has been accepted, the network G is
replaced by G, and the iteration step is repeated with the new
network. If the mutation is rejected, the next iteration step is
performed for the old network G.

The evolution is started with a random initial network G,,.
Thus the optimization process is based on the flow error,
while it remains larger than the tolerance threshold, and is
switched to the selection based on the robustness, when the
flow errors become sufficiently small. A similar optimization
approach has been previously used to reconstruct symmetric
networks from their Laplacian spectra [13].

We have tried several different mutation schemes and
found that, in the considered optimization process, the best
result is reached if an evolutionary mutation represents add-
ing a randomly generated path from an input node to an
output node to a given network or subtracting such a path. To
specify a mutation, one input node, one output node, and k
middle nodes (between 1 and M) are randomly chosen and
linearly connected, thus forming a graph g. We further de-
cide whether this graph g should be added to the existing
graph G or subtracted from it (in the sense of operations with
the graphs, see [14]). Under this mutation scheme, all middle
nodes are preserved. During the evolution, we retain a node,
even if it has no incoming connections (such nodes, however,
are not taken into account when estimating robustness). In
the final network, nodes without incoming connections are
deleted. In our numerical investigations, networks with eight
input and eight output nodes and with 20 (initial) middle
nodes were used. The target output matrices Qgﬁ were gen-
erated at random. Each row « in such a matrix has K
<N,,; nonzero elements, which are randomly located within
the row. Their values are chosen at random, in such a way
that their sum is equal to unity. Thus in response to the
activation of an input node, the network always activates K
output nodes, but the positions of these nodes and their acti-
vation degrees are randomly chosen. Figure 2 shows how the
flow error and the robustness (dash curve) evolve with time
during a typical optimization process. After the optimization
based on the robustness was switched on at about #;=6486,
the robustness increased by a factor of more than 17, while
keeping the error within the tolerance window.

To undertake a statistical analysis, many independent evo-
lutions starting from randomly chosen initial networks were
performed. In Fig. 3(a), the black diagram shows the histo-
gram of flow errors € in the ensemble of 100 networks ob-
tained by running the evolution based only on the flow error.
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In the same diagram, the gray filled diagram shows the dis-
tribution of flow errors €’ in the networks of this ensemble
after applying all possible local damages (deleting a middle
node). While the flow errors € of the selected networks re-
main all small, we see that the errors in the networks forming
their damage shells are much larger and there is a long tail in
their statistical distribution. In contrast to this, Fig. 3(b) dis-
plays analogous histograms for the evolution based on the
robustness (with the tolerance threshold 2=0.007). The dis-
tribution of flow errors (black) is almost the same as in Fig.
3(a), but the distribution of errors €’ after the application of
local damages is strongly different. Now, most of the net-
works within a damage shell have errors below the tolerance
threshold.

The local damage can also represent removal of a link,
not a node. In this case, the robustness p of a given network
is defined as the fraction of the networks, obtained by delet-
ing one of its links, which would show an error €’ below the
threshold. With this modification, the same optimization al-
gorithm, as described above, can be employed. By running
evolutions, based on this modified selection criterion, net-
works, which are robust against removal of links, could be
constructed.

Statistical properties of the two classes of networks, ro-
bust against the removal of either nodes or links, have been
compared for different tolerance thresholds. We have found
that the mean degree of the networks, which are robust
against the removal of nodes, is not significantly different
from that of the networks, selected only on the basis of their
flow error, whereas the networks robust against links remov-
als have a much larger number of connections. The cluster-
ing coefficient is increased with respect to the purely func-
tional networks for the networks robust against link removal
and decreased for the networks robust against removal of
nodes. The average path length, defined as the mean shortest
path connecting input and output nodes, shows a similar
behavior.

Distributions of structural motifs [12] have been deter-
mined for the designed networks robust against link and
node removals (Fig. 4). To do this, numbers of different
three-node subgraphs in a given network are first found.
These are further compared with the frequencies at which
various three-node motifs are present in the respective ran-
domized graphs and the “scores” of different motifs for a
given network are computed. A positive (negative) score
means that this particular motif is found more (less) fre-
quently in the considered graph than in its randomized ver-
sion. In this way, any graph can be characterized by a certain
structural motif diagram.

Milo et al. [12] have analyzed various real-world net-
works and discovered four superfamilies with distinct motif
diagrams. The second superfamily included signal transduc-
tion networks and genetic developmental networks of multi-
cellular organisms and the neural network of a nematode C.
elegans. These networks share a common function of infor-
mation processing, transmitting signals from input nodes via
middle nodes to a set of output nodes. It was suggested that
this common function should explain the observed conver-
gence of motif distributions of these networks. Our study,
based on a simple model of signal transduction, shows that
this explanation is not sufficient. Analyzing large ensembles
of functional networks, designed to implement various out-
put patterns, we have found that the common function does
not yet fix motif distributions, i.e., networks with the same
output pattern may still have very different motif diagrams.
Introducing additional evolutionary optimization of such
functional networks, aimed at making them robust against
link or node removals, we could see how motif diagrams of
these two groups of the networks diverged during the evolu-
tion starting from the same initial ensemble and approached
two different asymptotic forms when the optimization satu-
ration has been reached. The final motif distribution of the
networks robust against link removals [Fig. 4(a)] shows a
striking agreement with the respective diagrams for biologi-

FIG. 3. Histograms of different flow errors in
the ensembles of 100 networks (a) optimized
only by flow error and (b) optimized for robust-
- ness against deletion of a node. Black diagrams
show distributions of flow errors in the en-
sembles; gray filled diagrams show distributions
of flow errors after application of various local
damages. Optimization was run for 3 X 10° itera-

tion steps for each network.
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cal signal transduction networks and the genetic develop-
mental network of Drosophila, while the motif distribution
of the model networks robust against link removals re-
sembles that of the linguistic networks in the fourth super-
family [Fig. 4(b)].

Proceeding from this analysis, we suggest that the princi-
pal role in determining the characteristic motif distribution in
the second superfamily is played by the condition of robust-
ness against link removals, imposed by biological evolution.
Signal transduction networks and genetic developmental net-
works of multicellular organisms may have evolved to be-
come robust against random disruption of interactions be-
tween proteins, rather than the removal of entire proteins
(nodes) from these networks. In this respect, we note that a
genetic point mutation modifies only one amino acid in the
protein chain and this would typically lead only to a minor
change in the folded protein conformation. Therefore it can
be expected that, after such a mutation, a protein would lose
only some of its interactions with other proteins in the net-
work, corresponding to breaking of individual links in the
model. Moreover, the neural system of C. elegans may have
evolved to become robust against breaking of synaptic con-

works are included (gray curves).

nections, rather than against the death of whole neural cells.

The spectacular agreement between motif distributions of
real biological information processing networks and model
networks, optimized to be robust against link removals, can-
not be explained by purely qualitative arguments. It may
indicate the existence of a general statistical universality
class of such networks. The considered minimalistic model
neglects many details of actual signal transduction and ge-
netic regulation processes. Nonetheless, it is apparently able
to correctly reproduce major structural properties of net-
works in the second superfamily.

Although the focus in this study has been on biological
signal transduction networks, the results are more general.
The same model can be, for example, applied to describe
industrial logistic networks where a set of different goods
should be transported, in prescribed fractions, to a variety of
destinations.We have effectively shown how functional net-
works can be designed and made robust against different
kinds of local damage by running an artifical evolution pro-
cess.

We are grateful to U. Alon for discussing these results and
for permission to use his motif identification software.
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